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1. I N T R O D U C T I O N  

Thermocapillary motion of bubbles and drops driven by an externally imposed thermal gradient, 
described first by Young et al. (1959), has been attracting wide attention during last 15 years 
especially in application to material processing under conditions of  microgravity (Subramanian 
1983; Rogers & Davis 1990). The physical cause of a thermocapillary migration of liquid and gas 
particles is the mobility of  an interface which brings about  the motion of drops and bubbles under 
the action of surface tension gradients in a non-uniform temperature field. A solid particle or, 
say, a gas bubble with an interface frozen by adsorbed surfactants do not undergo thermocapillary 
migration in an externally imposed thermal gradient since there is nothing to generate flow in the 
ambient fluid. However, if a solid particle is hot and is placed near a f ree  liquid-gas or liquid-liquid 
interface, a non-uniform temperature distribution around the particle induces surface tension 
gradients resulting in a thermocapillary flow. The latter leads to the motion of the solid particle 
itself. 

In the present paper the spontaneous motion of a solid particle driven by the described 
thermocapillary interaction with a gas bubble is studied. The applied analysis uses some earlier 
results on the interaction of bubbles migrating in an external thermal gradient (Meyyappan et al. 
1983), as well as the theory of the hydrodynamic interaction of two drops by Haber  et al. (1973). 

2. S T A T E M E N T  O F  T H E  P R O B L E M  

Consider a solid particle with a radius a and a gas bubble with a radius b submerged in an 
unbounded fluid resting and thermally uniform at infinity. The solid particle is hotter or colder 
than the outer fluid, and it has a constant temperature T~. The heat flux at the surface of the bubble 
is neglected due to the low heat conductivity of  the gases. 

All physical properties of  the ambient fluid are assumed to be constant, except the surface 
tension of the bubble, which depends linearly on temperature: a = a 0 + ( ~ ¢ r / ~ T ) ( T -  To), where 
a0 is the surface tension corresponding to the temperature To far away from the particles, and 
~cr/~T = const. The surface tension ¢r 0 is supposed to be sufficiently large to preserve the spherical 
shape of the bubble. 

A non-uniform temperature field around the solid particle generates the surface tension gradient 
at the bubble surface. This gradient results in a thermocapillary flow of  the contiguous fluid which 
causes the motion of both the bubble and the solid particle. The effect of  gravity is neglected and 
only the motion driven by the surface tension gradient is studied. The viscosity of  the gas inside 
the bubble is also ignored and only the flow in the ambient fluid is considered. The motion of the 
fluid is assumed to be sufficiently slow so that, at any moment,  inertia effects are negligible and 

tThis  paper was presented at the 7th Israeli-Norwegian Scientific Symposium on Fluid Mechanics of Heterogeneous Systems, 
20-22 June 1994, Trondheim, Norway. 
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the Stokes approximation holds. The velocities of the bubble and of the solid particle, as yet 
unknown, should be found from the condition that the total forces acting on both the particle and 
the bubble are zero. Heat transfer is presumed to be controlled by thermal diffusion (the Peclet 
number is zero). The heat capacity of the solid particle is supposed to be large in comparison with 
that of the surrounding fluid so that the temperature of the particle does not change significantly 
during the characteristic time of the motion. 

The following scaling is chosen: a for length, r/ ~ ( ~ a / ~ T ) ( T s -  To) for velocity, where ~/is the 
viscosity of the contiguous fluid, and the dimensionless temperature is introduced, 0 = ( T  - To)/ 

( T = - T o ) .  
The bipolar co-ordinate system (4, f )  connected with the solid particle and the gas bubble is 

chosen, the surface of the solid particle corresponding to 4 = ~ > 0 and the bubble surface relating 
to ~ = - f l  < 0. The ratio of the radii is then r = b /a  = sinh c~/sinh fl and the separation distance 
between the bubble and the particle is d = cosh c~ - 1 + r(cosh fl - 1). 

According to the described statement, the flow and temperature fields are described by the 
following equations and boundary conditions 

E 2 ( E 2 ~ ) = 0 ;  A0 = 0 ;  [1] 

4=0,  ; = o ,  ~,/p:=O, o=o;  [2] 

(1 - - /~2 )  0~b (1 - kt2)sinh 4 
=~x, ~ ' = - V s  2h 2 , 04 - V= ch 3 , 0 = 1 ;  [3] 

(1 --  #2) 00 c~O 
( = - / k  6 ,=-v~,  2h: ' ,~-=0, n¢~=-h~- .  [41 

Here ~ is the stream function, E 2 and A are the Stokes and the Laplace operators in the 
bispherical co-ordinate system, respectively, h = (cosh ~ -  I~)/c, ~t = cos (, c = sinh~, p is the 
radial co-ordinate of  the related cylindrical co-ordinate system (p, z) [see Happel & Brenner (1965) 
for details]; V= and Vb are as yet unknown projections of the dimensionless velocities of the solid 
particle and of the gas bubble on the z-axis. The last boundary condition in [4] is the balance of 
the tangential stresses at the surface of the bubble which links the temperature and the velocity 
fields, / /~  being the tangential component of the viscous stress tensor. 
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Figure 1. Dimensionless velocities of the thermocapillary motion of the solid particle and the gas bubble 
versus dimensionless separation distance. 
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3. R E S U L T S  AND D I S C U S S I O N  

The solution of  the problem [1-4] is analogous to that described in detail by Meyyappan et al. 
(1983) for two bubbles migrating in an externally imposed thermal gradient. First, the temperature 
field is found, the problem being reduced to an infinite linear three-diagonal system for unknown 
coefficients of the temperature field expansion in Legendre polynomials, the solution of  which can 
be easily found numerically. Then, the problem for the flow field is solved and the obtained solution 
for the temperature field is used in the tangential stress balance. The force balance leads finally 
to a linear algebraic system for the velocities Vs and Vb [see Meyyappan et al. (1983) and Haber 
et al. (1973) for details]. 

Figure 1 presents the dependence of  the dimensionless velocities Vs and Vb on the dimensionless 
separation distance d at a fixed value of the radii ratio. When the distance between the bubble and 
the particle is sufficiently large, their velocities are directed oppositely. For most liquids, surface 
tension decreases with temperature, ~ a / ~ T  < 0, and if Vs > 0, Vb < 0, this corresponds to the 
motion of the bubble and the hot solid particle towards each other (they move away from each other 
if the solid particle is colder than the outer fluid). 

The flow pattern relating to this motion is shown in figure 2(a). Surface tension gradients at 
the liquid-gas interface induced by the hot solid particle push the fluid out of the gap between the 
particle and the bubble leading to their attraction. The velocities of  both the solid particle and 
the gas bubble decrease with increase of  the separation distance, however, the solid particle slows 
down with the increase of  the separation distance much faster than the bubble. At a large distance 
between the bubble and the particle, the bubble velocity tends to that calculated by Young et al. 
(1959) and decreases proportionally to the temperature gradient: VD oC d -2. The velocity of the solid 
particle V~ decreases as the velocity of the flow far from a thermocapillary migrating bubble, 
namely, a s  Vb(b/d) 3. In our case, however, the bubble velocity V b itself decreases as d -2, thus 
Vs o c d  -5. 

While the solid particle and the bubble approach each other, their velocities grow and reach 
maximum values at some separation distances, see figure 1 (their relative velocity also reaches a 
maximum value at a certain separation distance). During further approach, the velocities of the 
bubble and the solid particle begin to decrease because of  two mechanisms hindering their motion 
towards each other. One is the viscous shear stresses growing with the thinning of the gap between 
the particle and the bubble. The other mechanism is the pressure gradient in the z-direction 
produced by the translational motion of the bubble towards the solid particle and tending to push 
the latter away from the bubble. At a sufficiently small distance, this pressure gradient becomes 
so strong that the solid particle stops and after that the approaching gas bubble begins to push 
the particle in front of  itself in the same direction. This corresponds to V~ < 0, Vb < 0 in figure 1. 

h 

Figure 2. Thermocapillary flow (streamlines) in the surrounding fluid generated by the hot solid particle 
interacting with the gas bubble. (a) The bubble and the particle move towards each other, d = 1, r = 1.5 
and (b) the gas bubble moves towards the hot solid particle and pushes the latter in front of itself in the 

same direction, d = 0.1, r = 0.4. 
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Figure 3. Critical separation distance at which the gas bubble begins to push the solid particle in front 
of itself, as a function of the bubble-to-particle radii ratio. 

The corresponding flow pattern is presented in figure 2(b). In this case the velocity of the bubble 
is always larger than the velocity of the solid particle, so that while moving in the same direction, 
the bubble and the particle still approach each other, moving asymptotically with equal velocities 
in the same direction as a whole. However, at close contact, the motion of the particles cannot 
be described within the framework of the bispherical co-ordinate system. 

The value of the critical separation distance d* at which the solid particle stops and begins to 
move together with the bubble in the same direction depends on the radii ratio r. This dependence 
is presented in figure 3. This distance decreases with r since the surface of the large bubble is flatter 
in the region of the gap between the bubble and the solid particle, and the smaller the z-component 
of the flow and the translational velocity of the bubble. When the radius of the bubble tends to zero, 
the critical distance infinitely grows because in this case the thermocapillary flow is concentrated 
in the vicinity of the particles line of centres and is always directed from the bubble to the particle 
pushing the latter away from it. 

The dependence of the velocities of the solid particle and the gas bubble on the ratio of their 
radii at a given separation distance is shown in figure 4. The velocity of a small bubble increases 
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Figure 4. Dimensionless velocities of the solid particle and the gas bubble as functions of the 
bubble-to-particle radii ratio, d = 0.1. 
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linearly with its radius in accordance with the results of Young et al. (1959). With further growth 
of the radius, the bubble velocity reaches maximum and then diminishes tending to zero in the case 
of an infinitely large bubble. When r exceeds the threshold determined by d*, the solid particle and 
the bubble begin to move towards each other. With the increase of bubble radius, the velocity of 
the solid particle increases and tends to a constant value corresponding to the interaction with a 
plane free surface. This case, however, requires special consideration and will be published 
elsewhere. 
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